A dynamic model for the de-absorption of carbon dioxide from Monoethanolamine solution

نویسندگان

  • Timothy Greer
  • Almat Bedelbayev
  • Jose Manual Igreja
  • João Fernando Pereira Gomes
  • Bernt Lie
چکیده

Due to the adverse effect of CO2 from fossil fuel combustion on the earth’s ecosystems, the most cost effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the deabsorption process was developed with Monoethanolamine solution. Henry’s law was used for modeling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng Robinson EOS were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapor energy balances were developed to calculate the liquid and vapour temperature, respectively. The model results compare favourably with other published results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

The Equilibrium Solubility of Carbon Dioxide in the Mixed Aqueous Solutions of Triisopropanolamine and Monoethanolamine in the Range 30-70 C and Low Partial Pressures

The equilibrium solubility data of CO2 in the various aqueous blends of triisopropanolamine (TIPA) + monoethanolamine (MEA) with the total alkanolamine concentration of 2 mole / dm3 were measured at the temperatures of 30, 40, 50, 60 and 70 oC and CO2 partial pressures below 100 kPa. The experiments were done in an atmospheric gas absorption syste...

متن کامل

CO2 Removal from Air in a Countercurrent Rotating Packed Bed, Experimental Determination of Height of Transfer Unit

Carbon dioxide capture is a key issue in climate change mitigation. For decades the removal of carbon dioxide has been an essential step in many industrial processing operations such as the synthesis of ammonia, natural gas purification, and oil refining. In this study, a rotating packed bed has been designed for absorption of carbon dioxide from an air stream. The rotating packed bed is a comp...

متن کامل

Modeling and Experimental Study of Carbon Dioxide Absorption in a Flat Sheet Membrane Contactor

comIn the present study, CO2 removal from natural gas stream has been studied using a flat sheet membrane contactor. A three dimensional mathematical model is developed to describe the process. The model considers the transport of a gas mixture containing carbon dioxide and methane through a flat sheet membrane contactor module. The model is based on the non-wetted mode of operation, in which t...

متن کامل

Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes

In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008